skip to main content


Search for: All records

Creators/Authors contains: "Somero, George N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Thermal performance curves are commonly used to investigate the effects of heat acclimation on thermal tolerance and physiological performance. However, recent work indicates that the metrics of these curves heavily depend on experimental design and may be poor predictors of animal survival during heat events in the field. In intertidal mussels, cardiac thermal performance (CTP) tests have been widely used as indicators of animals' acclimation or acclimatization state, providing two indices of thermal responses: critical temperature (Tcrit; the temperature above which heart rate abruptly declines) and flatline temperature (Tflat; the temperature where heart rate ceases). Despite the wide use of CTP tests, it remains largely unknown how Tcrit and Tflat change within a single individual after heat acclimation, and whether changes in these indices can predict altered survival in the field. Here, we addressed these issues by evaluating changes in CTP indices in the same individuals before and after heat acclimation. For control mussels, merely reaching Tcrit was not lethal, whereas remaining at Tcrit for ≥10 min was lethal. Heat acclimation significantly increased Tcrit only in mussels with an initially low Tcrit (<35°C), but improved their survival time above Tcrit by 20 min on average. Tflat increased by ∼1.6°C with heat acclimation, but it is unlikely that increased Tflat improves survival in the field. In summary, Tcrit and Tflat per se may fall short of providing quantitative indices of thermal tolerance in mussels; instead, a combination of Tcrit and tolerance time at temperatures ≥Tcrit better defines changes in thermal tolerance with heat acclimation. 
    more » « less
  2. null (Ed.)
    Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus —a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate—can quickly (in 24–48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24–48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3–22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)